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Experimental measurements of the residual resistivity ��x� of the binary-alloy system Fe1−xCrx have shown
anomalous concentration dependence which deviates significantly from Nordheim’s rule. In the low �x
�10%� Cr concentration regime the resistivity has been found to increase linearly with x until �10% Cr where
the resistivity reaches a plateau persisting to �20% Cr. In this paper we present ab initio calculations of ��x�
which explain this anomalous behavior and which are based on the Korringa-Kohn-Rostoker method in con-
junction with the Kubo-Greenwood formalism. Furthermore we are able to show that the effects of short-range
ordering or clustering have little effect via our use of the nonlocal coherent-potential approximation. For the
interpretation of the results we study the alloy electronic structure by calculating the Bloch spectral function
particularly in the vicinity of the Fermi energy. From the analysis of our results we infer that a similar behavior
of the resistivity should also be obtained for iron-rich Fe1−xVx alloys—an inference confirmed by further
explicit resistivity calculations. Both of these alloy systems belong to the same branch of the famous Slater-
Pauling plot, and we postulate that other alloy systems from this branch should show a similar behavior. Our
calculations show that the appearance of the plateau in the resistivity can be attributed to the dominant
contribution of minority-spin electrons to the conductivity which is nearly unaffected by the increase in Cr/V
concentration x, and we remark that this minority-spin electron feature is also responsible for the simple linear
variation in the average moment in the Slater-Pauling plot for these materials.
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I. INTRODUCTION

The Slater-Pauling plot of average magnetization per
atom M versus valence electron number Nv plays a pivotal
role in the understanding of the properties of ferromagnetic
alloys.1 Its triangular structure of two straight lines with gra-
dients of opposite sign neatly categorizes most alloys into
one of two classes where dM

dNv
= �1. Long ago Mott2 pointed

out how this behavior can be explained by requiring the
number of either majority- or minority-spin electrons to be
fixed. This notion has subsequently been confirmed and
given substance by modern spin density-functional theory
�DFT� calculations.3–6 In this paper we follow the implica-
tions of this for the residual resistivities of ferromagnetic
alloys. In particular, using the latest ab initio techniques for
describing disordered systems, we demonstrate how the mea-
sured apparently anomalous resistivities of iron-rich Fe1−xCrx
alloys7,8 are directly attributable to their average minority-
spin electron number being fixed and consequently their lo-
cation on the dM

dNv
= +1 section of the Slater-Pauling plot. We

postulate that other alloys in this category should also show
the same behavior, and we strengthen this conjecture by the
findings from another detailed ab initio study of Fe1−xVx
alloys. We also infer that short-range order �SRO� should
have little effect on the resistivities of alloys in this category,
and again we are able to back up these remarks by detailed
specific ab initio calculations.

Many DFT calculations for disordered ferromagnetic al-
loys show that the majority-spin electrons “see” little disor-
der and that the majority-spin d states are fully occupied.
This leads to dM

dNv
=−1.3 In contrast the minority-spin electron

states are significantly affected by disorder. The overall elec-
tronic transport is therefore taken up by the sp majority-spin
electrons. Alloys in this category include fcc-based CoMn-,
FePt-, and Ni-rich NiFe alloys.

On the other hand, for some other alloys, typically Fe-rich
bcc-based alloys and many Heusler alloys, the number of
minority-spin d electrons is fixed as the Fermi energy EF is
pinned at a low level in a trough of the d-electron density of
states �DOS�. dM

dNv
= +1 of the Slater-Pauling curve follows

directly from this.3 It is the ramifications of this feature for
the electronic transport in such alloys that we investigate
here. This time disorder is “seen” strongly by the majority-
spin electrons and rather weakly by the minority-spin elec-
trons. Figure 1 provides a relevant illustration for a bcc
Fe0.8Cr0.2 disordered alloy.4 The Fe- and Cr-related minority-
spin densities of states have similar structure in contrast to
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FIG. 1. �Color online� Spin-projected coherent-potential ap-
proximation �CPA� density of states of disordered bcc Fe0.8Cr0.2.
The solid �black� line shows the total DOS, the dashed �red� line
shows the Fe d states and the dotted �blue� line shows the Cr d
states. The Fermi level is located at the zero of the energy axis.
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those of majority spin. EF is positioned in a valley, making
the average number of minority-spin electrons �3. Moreover
from these observations we can expect the resistivity to be
dominated by minority-spin electrons and to be rather insen-
sitive to overall composition and short-range order. Recently,
measurements of the residual electrical resistivity of iron-
rich Fe1−xCrx alloys have been reported and described as
anomalous. The measurements show that the resistivity in-
creases as small amounts of Cr are added to Fe until a pla-
teau is reached ranging from x=10% to 20%.8 This behavior
differs markedly from the Nordheim parabolic concentration
dependence. An analysis of the data is hindered by a com-
plexity of short-range order in Fe1−xCrx. Mirebeau et al.9

reported that for x�10% the system develops short-ranged
order whereas for larger x short-ranged clustering is found.
At higher Cr concentrations still ��20%�, the alloys can un-
dergo aging—a separation into Fe-rich ��� and Cr-rich ����
phases10,11 leading either to a miscibility gap or to a trans-
formation into a tetragonal � phase.

We use the Kubo-Greenwood formalism12,13 implemented
with the Korringa-Kohn-Rostoker �KKR� method for ab ini-
tio calculations of the residual resistivities of Fe1−xCrx alloys.
Disorder is accounted for by the use of the CPA.14 In order to
examine the effects of short-ranged order within the disorder,
we use our recently developed method which involves the
nonlocal �NL�-CPA.15 We complement our ab initio resistiv-
ity calculations with Bloch spectral-function �BSF� calcula-
tions which show the electronic structure in the vicinity of
EF and enable a connection to be made to the semiclassical
Boltzmann description of electronic transport properties.16

We find that our calculations fully support our initial ex-
pectations outlined above which are linked to the alloy loca-
tion on the Slater-Pauling plot in addition to describing the
experimental data well. Moreover from further calculations
for Fe1−xVx alloys we predict that a similar behavior will be
found for these materials as well as for other systems sited in
this region of the Slater-Pauling plot.

Section II outlines the ab initio theoretical framework
�full details are given in Refs. 14 and 15�. This is followed
by our study of the resistivity of Fe1−xCrx as a function of x
together with Bloch spectral-function interpretation. We then
describe a similar investigation of Fe1−xVx alloys. Section IV
summarizes and emphasizes the overall conclusions.

II. THEORY

A. Kubo-Greenwood equation

The basis of our investigations is supplied by the Kubo-
Greenwood equation for the symmetric part of the conduc-
tivity tensor,14

��	 =



�N�
Tr� ĵ�IG+�EF� ĵ	IG+�EF�� . �1�

Here N is the number of atomic sites, � is the volume per
atom, � � indicates an averaging over configurations, and
IG+�EF� is the imaginary part of the retarded one-particle
Green’s function at the Fermi energy EF. For the determina-
tion of IG+�EF� we use the multiple-scattering theory �MST�

which is the basis of the KKR band-structure method. Within
MST the real-space representation of IG+ has the following
form:17

IG+�r�,r��,E� = I �

1
2

Z
1
�r�,E��
1
2

�E�Z
2

� �r��,E� . �2�

Using a fully relativistic implementation, the wave functions
Z�Z�� are the regular right �left-�-hand side solutions of the
Dirac equation, � is the scattering path operator, and 

= �� ,�� with � and � being the relativistic spin orbit and
magnetic quantum numbers.18 Finally, ĵ� in Eq. �1� is the
current-density operator that is given in relativistic form by

ĵ� = ec��, �3�

where �� is one of the standard Dirac matrices.18

The central step to calculate the conductivity is to handle
the averaging over all possible configurations. For a ran-
domly disordered system the CPA �Ref. 19� is a well-
established method for the configuration averaging. The CPA
introduces an effective medium which represents the elec-
tronic properties of the disordered alloy. This effective me-
dium is described by its single-site t matrix tCPA in combina-
tion with its averaged scattering path operator �CPA,

��CPA =
1

�BZ
�

�BZ

d3k��t�CPA�−1 − G� �k�,E�	−1, �4�

where the underline indicates matrices with respect to the
spin-angular character 
. Assuming a binary-alloy A1−xBx,
t�CPA and ��CPA have to fulfill the CPA condition

��CPA = �1 − x���A + x��B. �5�

��A�B� is the scattering path operator for an atom of type A�B�
embedded into the CPA medium and G� �k� ,E� is the KKR
structure constant matrix. With these CPA equations it is pos-
sible to construct the effective medium iteratively.

Butler14 derived within the CPA a scheme to handle the
averaging over configurations of the two Green’s functions.
His formulation of the Kubo-Greenwood equation on the ba-
sis of the KKR CPA is widely applied and gives in general
good agreement with experimental data.20–25

It has to be emphasized that the CPA is a single-site
theory and therefore neglects correlations concerning the oc-
cupation of the neighboring atomic sites. For that reason one
has to use more elaborate methods to include SRO effects.
One possibility is to use the NL-CPA.26–30 The NL-CPA cre-
ates �as the CPA� an effective medium and can be understood
as a cluster generalization of the well-established CPA. The
corresponding NL-CPA equations can be written as

��NL-CPA
IJ =

1

�BZ
�
K� n


�
�K� n

d3k��t�NL-CPA�−1 − G� �k�,E�

− �Ĝ� �K� n,E�	−1�eiK� n·�R� I−R� J�, �6�

�=NL-CPA = �
�

P��=��with �
�

P� = 1
 , �7�
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with the double underline indicating matrices with respect to
site and spin-angular character indices I and 
, respectively.
In Eq. �7� �=� is the scattering path operator for a cluster of
type � embedded into the NL-CPA medium, P� is the prob-

ability that this cluster type occurs, and �Ĝ� �K� n ,E� are effec-

tive structure constant corrections for tile K� n which account
for nonlocal correlations due to the disorder configurations.27

Recently the KKR NL-CPA was combined with the
Kubo-Greenwood equation.15 On the basis of this scheme it
is possible to investigate ordering effects on the residual re-
sistivity in a systematic way.

For ferromagnetic cubic solids with the magnetization
along the z axis the conductivity tensor consists of three
independent components: �xx=�yy =��, �zz=��, and �xy =
−�yx. �� and �� are the transverse and longitudinal conduc-
tivities, while �xy�yx� determine the spontaneous or anoma-
lous Hall resistivity. In line with the abovementioned experi-
mental investigations only the isotropic resistivity �̄ is
considered that is given by

�̄ =
1

3
�2�� + ��� �8�

with ��=��
−1 and �� =��

−1 if the spin-orbit-induced compo-
nent �xy is ignored.

B. Bloch spectral functions

In a most general way the density of states may be defined
as31

n�E� = �
n

��E − En� , �9�

where En are the electronic eigenvalues of the system. In
analogy the BSF can be defined by17

A�E,k�� = �
n

��E − En�k��	 , �10�

and for that reason it can be regarded as a k�-resolved density
of state. Dealing with an ordered system and a given k� vector
the BSF has, at the positions of the eigenvalues, an infinitely
sharp peak and it is zero everywhere else. If one has an alloy
instead of a perfect crystal an appropriate expression for the
BSF within KKR CPA was worked out by Faulkner and
Stocks,17

A�E,k�� = −
1

�
I Tr�F� cc��CPA�E,k��	 −

1

�
I Tr��F� c − F� cc���CPA	 ,

�11�
with

��CPA =
1

�BZ
�

BZ
d3k��CPA�E,k�� . �12�

The matrices F� c and F� cc are given in terms of the overlap
integrals

F

�
�� = �

�

d3rZ

���E,r��Z
�

� �E,r�� . �13�

� and � denotes an atom type of the alloy. For more details
and explicit expressions see Ref. 17. Compared to a pure

system, the BSF for an alloy becomes broadened due to the
disorder. This broadening can be related to the lifetime of an
electron in a Bloch state and is therefore quite useful for the
interpretation of the resistivity data.16

With the BSF it is possible to discuss a dispersion relation
E�k�� even for alloys.32 Strictly speaking such a dispersion
relation is in general not defined for alloys because k� is not a
good quantum number for disordered systems. Nevertheless,
the dispersion relation represented by the BSF can be used to
calculate Fermi velocities16 and gives therefore useful hints
for the interpretation of resistivity data.

C. Computational details

All calculations were done in the framework of spin
density-functional theory using the local spin-density ap-
proximation �LSDA� with the parametrization of Vosko et
al.33 for the exchange-correlation potential.

The CPA and the NL-CPA formulations of the Kubo-
Greenwood equation were implemented within the self-
consistent spin-polarized relativistic KKR �SPR-KKR�
scheme.34 All calculations include vertex corrections.14,15 To
ensure convergence of the results with respect to the angular-
momentum expansion, the cutoff lmax=4 has been used.

III. RESULTS

A. CPA Results

The central result of our calculations is shown in Fig. 2.
This figure shows the residual resistivity of Fe1−xCrx and
Fe1−xVx as a function of the Cr/V concentration x. As men-
tioned above, the experimental Fe1−xCrx data show an
anomalous behavior. In the low Cr concentration regime
���10%� the residual resistivity increases with increasing
Cr concentration. Further increase in the Cr content does not
lead to a further increase in the resistivity. Our theoretical
results show the same variation with the Cr concentration. At
10% Cr we obtain the highest value for the resistivity. If one
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FIG. 2. �Color online� The residual resistivity of Fe1−xCrx and
Fe1−xVx as a function of the Cr/V concentration x. The asterisks
�red line� show the experimental data for Fe1−xCrx of Ref. 7 at 4.2K.
The triangles and diamonds �black lines� show our CPA results for
Fe1−xCrx and Fe1−xVx, respectively.
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further increases the Cr concentration, the resistivity stays
more or less constant at �8 �� cm.

The Fe1−xVx alloys show a similar behavior for the theo-
retical residual resistivity. With increasing V concentration
the residual resistivity increases up to �2 �� cm �at 6% V�.
Further increase in the V concentration leads only to small
changes in the residual resistivity.

This behavior can be explained by a different variation in
the electronic structure for the majority- and minority-spin
subsystems when the Cr/V concentration changes. Adding Cr
to pure Fe in a random way, the disorder in the system in-
creases, and with this the resistivity increases. This conven-
tional behavior is observed in the regime with a Cr content
smaller than �8% Cr where the system shows a Nordheim-
type behavior. To identify the contribution of the majority-/
minority-spin subsystems to the conductivity, we calculated
the BSF according to Eq. �11�. Figure 3 shows the total and
spin-projected BSF for three different Cr concentrations �4%,
12%, and 20% Cr�. The important observation from the dis-
played BSF is the different dependencies of the majority-
and minority-spin subsystems on the Cr concentration. At
4% Cr both spin subsystems show sharp peaks for the BSF
which indicate that the impact of disorder is relatively small.
If one increases the Cr concentration up to 12% a dramatic
change occurs. For the BSF of the majority subsystem the
prominent lens-shaped band disappears and the remaining
rectangular-shaped band becomes strongly smeared out,
whereas the minority component is almost unchanged. Fur-
ther increase in the Cr concentration continues this trend. For
a better illustration of the influence of the Cr increase in the
minority component, we show in Fig. 4 explicitly the peaks

of the BSF at the Fermi energy along the �-X direction. The
BSF shows three main peaks with the last peak �the closest
peak to the X point� being split. At 4% Cr an additional small
peak is present to the right of the split peak. This peak is due
to a hybridization with the majority subsystem. This can be
inferred from Fig. 3 if one compares the minority and ma-
jority BSFs for 4% Cr. The reason for this hybridization is
that in fully relativistic calculations, the spin is not a good
quantum number because of the presence of spin-orbit
coupling.35

The behavior of the three remaining peaks is quite differ-
ent. The narrow peak shifts with increasing Cr concentration
toward the � point, and at 20% Cr this peak overlaps with
the peak closest to the � point. The split peak remains nearly
fixed at its position but one observes a narrowing with in-
creasing Cr concentration, which corresponds to an increased
lifetime of this state.

For comparison we also calculated BSF for Fe1−xVx and
found a similar behavior of the majority-/minority-spin sub-
system as for Fe1−xCrx. Figure 5 shows the spin-projected
BSF for Fe0.8V0.2. One can see that again the majority com-
ponent becomes smeared out whereas the minority compo-
nent displays sharp peaks. To get a more detailed picture of
the Fe1−xVx BSF we show in Fig. 6 a similar picture as
shown in Fig. 4 for Fe1−xCrx. If one compares Fig. 6 with
Fig. 4 one can see that for Fe1−xVx the BSF peaks are sharper
than for Fe1−xCrx. Therefore one can say that the minority-
spin electrons see a smaller difference between Fe and V
atoms compared to Fe and Cr atoms. This explains why the

FIG. 3. Total and spin-projected BSF of Fe1−xCrx at the Fermi
energy in the �001� plane for different Cr concentrations �top: 4%
Cr; middle: 12% Cr; bottom: 20% Cr�. The black regions corre-
spond to values �50 arb. units. For a better resolution the cusps of
the BSF have been cut.
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FIG. 4. BSF along the �-X direction for the minority-spin sub-
system in Fe1−xCrx for three different Cr concentrations �4%, 12%,
and 20% Cr�. The cusps of the BSF have been cut at 300 arb. units.

FIG. 5. Total and spin-projected BSF of Fe0.8V0.2 at the Fermi
energy in the �001� plane. The black regions correspond to values
�50 arb. units. For a better resolution the cusps of the BSF have
been cut.
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residual resistivities are higher in Fe1−xCrx compared to
Fe1−xVx. Figure 6 shows that the increased disorder due to
the increased V concentration does not affect the BSF peaks
of the minority-spin subsystem. Jen and Chang36 measured
the residual resistivity of polycrystalline Fe1−xVx. They ob-
served a monotonically increase in the residual resistivity in
the range of 0.04�x�0.2. They also measured the aniso-
tropic magnetoresistance and obtained a maximum for this
quantity at �7% V. The direct comparison of these measure-
ments with our transport calculations is difficult, however,
owing to the influence of the polycrystalline nature of the
samples on the resistivity being hard to estimate.

To identify the character of the smeared out states from
the majority subsystem, we projected the Fe1−xCrx BSF ac-
cording to its s, p, and d contributions. This is shown in Fig.
7. The main part of the majority states has d-like character.
These states obviously strongly broaden with increasing Cr
concentration. This behavior is opposite to that of the minor-
ity subsystem, although this is also dominated by d-like
states. The different behavior of the d states for the two spin
subsystems can also be seen in the density of states. In Figs.
1 and 8 the spin-projected DOS of Fe1−xCrx for two different
Cr concentrations is shown. In addition to the total DOS we
show the d-like part of the DOS. The DOS shown in Fig. 8 is
very close to that of pure Fe. One can see that for the ma-
jority component the antibonding Fe d states are also occu-
pied whereas for the minority component the Fermi level is
located in a so-called pseudogap below the antibonding
states. Figure 1 clearly shows the relative positions of the Cr

and Fe d states. These states are strongly hybridized for the
minority component. The opposite happens in the majority-
spin channel, where the Fe and the Cr d states are well sepa-
rated in energy.

With increasing Cr concentration the antibonding Fe d
peak of the majority component becomes more and more
depopulated and new states appear above the Fermi level.
Olsson et al.11 showed that this leads to a completely
smeared out band at approximately equiatomic composition.
If one compares this with the behavior of the d states of the
minority component, one can see that the increase in Cr con-
centration has no effect on the total DOS of the minority
component.

It is well known that the DOS of Fe1−xVx consists
of a minority-spin subsystem where the Fermi energy is
pinned in a pseudogap and a majority-spin subsystem which
becomes broadened and depopulated with increasing V
concentration.4,6 These similar characteristics of the Fe1−xCrx
and the Fe1−xVx DOSs are responsible for the appearance of
the Slater-Pauling curve for the magnetic moment of these
alloys. Due to the fact that the number of minority electrons
�N↓� is independent of the Cr/V concentration, the magneti-
zation per atom M varies linearly with the Cr/V
concentration,4

M = Z − 2Nd↓ − 2Nsp↓, �14�

with Z as the number of valence electrons. The number of sp
electrons in the minority-spin system Nsp↓ changes only very
little across the 3d row.4 Therefore one can conclude that the
Cr/V concentration-independent hybridized Fe and Cr/V d
states of the minority-spin subsystem are responsible for the
appearance of the Slater-Pauling curve and in addition for
the apparently anomalous behavior of the residual resistivity
of these materials.

The discussion of the electronic structure of Fe1−xCrx and
Fe1−xVx in terms of the BSF and DOS curves has obviously
been made in the spirit of the two-current model for the
conductivity of spin-polarized solids. The fully relativistic
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FIG. 6. BSF along the �-X direction for the minority-spin sub-
system in Fe1−xVx for three different V concentrations �4%, 12%,
and 20% V�. The cusps of the BSF have been cut at 300 arb. units.

FIG. 7. Projected majority component of the Fe1−xCrx BSF at
4% Cr. The left plot shows the total BSF whereas the middle and
the right plots show the s+ p- and d-projected BSFs, respectively.
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FIG. 8. �Color online� Spin-projected CPA density of states of
Fe0.96Cr0.04. The solid �black� line shows the total DOS, the dashed
�red� line shows the Fe d states, and the dotted �blue� line shows the
Cr d states. The Fermi level is located at the zero of the energy axis.
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approach for calculating the conductivity used here, strictly
speaking, does not allow a decomposition of the conductivity
into spin channels. The reason for this is that spin-orbit cou-
pling gives rise not only to the off-diagonal elements �xy
mentioned above but also to spin-flip contributions that in-
fluence the isotropic conductivity or resistivity, respectively.
If the spin-orbit coupling strength is not too strong, however,
an approximate decomposition can nevertheless be made. As
was demonstrated in Ref. 37, ignoring the small spin-flip
elements connected with the current-density operator in Eq.
�3�, one can still define a spin-projected conductivity. This is
indeed justified for Fe1−xCrx by the fact that the sum of the
approximate conductivities �↑+�↓ hardly differs from the
conductivity calculated in a relativistic way �Fig. 2�. The
results for �↑ and �↓ shown in Fig. 9 indeed confirm the
picture that evolved from the BSF, i.e., �↓ is about 2 orders
of magnitude larger than �↑ and is nearly concentration in-
dependent for x�8%.

In summary the resistivity increase from 0% to 10% Cr
�0% to 6% V� is due to the increased disorder scattering for
the majority-spin subsystem; roughly speaking, the contribu-
tion of the majority subsystem to the conductivity drops
down. This drop down can be explained by a smeared out
BSF for this component. The increasing Cr/V concentration
leads to a broadening of the BSF. This broadening can be
related to a decrease in the lifetime of the investigated elec-
tronic state which leads to an increasing resistivity. At higher
Cr/V concentrations only the minority subsystem contributes
to the conductivity. The increase in the Cr/V concentration
leads to no broadening of the minority states. Therefore, the
contribution of this component to the conductivity in the
range of 10%–20% Cr �6%–20% V� is constant. This leads to
a nearly constant resistivity in that concentration regime.

B. NL-CPA results

The next step in our analysis is to investigate the influence
of SRO effects on the residual resistivity since this was sug-
gested to be the reason for the anomalous concentration de-
pendence of the residual resistivity. To include SRO effects
we use the NL-CPA which is, as explained above, a cluster

generalization of the CPA. Therefore we have to define ap-
propriate cluster configurations and their associated prob-
abilities �P��. We used the smallest possible bcc cluster with
two atoms. This leads to four different cluster configurations,
e.g., Fe1−xCrx: pure Fe �FeFe�, pure Cr �CrCr�, and two
mixed clusters with different occupation of the lattice sites
�FeCr and CrFe�. The probabilities of the configurations de-
pend on the investigated ordering case. For example in the
case of Fe0.5Cr0.5 and SRO, only the configurations FeCr and
CrFe have to be considered. For the simulation of clustering
effects only the pure configurations FeFe and CrCr have non-
zero probabilities, and to simulate total disorder all configu-
rations are used. In Ref. 15 a detailed description of how to
define the configuration probabilities for a bcc lattice is
given. To display the contribution of the different cluster
configurations to the density of states of a disordered
Fe1−xCrx crystal, we show in Fig. 10 the cluster-resolved den-
sity of states for two different Cr concentrations. From this
figure one can see that the total DOS agrees very well with
the total CPA DOS from Figs. 1 and 8. The most dominant
contribution to the total DOS comes from the FeFe cluster

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
x

1

10

100

1000

σ
(a

.u
.)

total conductivity
σ↑
σ↓

FIG. 9. �Color online� Spin-resolved conductivities �↑ and �↓
for Fe1−xCrx.
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due to the high Fe concentration. If one compares Fig. 10
with Figs. 1 and 8 one obtains a similar behavior of the
minority-/majority-spin subsystem. The minority part of the
DOS shows a hybridization among all cluster configurations
whereas the majority part shows a separation in energy be-
tween the FeFe/FeCr and CrCr/CrFe clusters.

Figure 11 shows our results for the residual resistivity
within the NL-CPA. In this plot we show again the three
curves from Fig. 2 and additional some curves for different
ordering situations. The NL-CPA results for disordered
Fe1−xCrx shows satisfying agreement with the CPA results.

Experimentally it is observed that Fe1−xCrx tends for x
�0.1 to SRO and for x�0.1 to clustering9 whereas Fe1−xVx
tends to SRO.38 Therefore we show in Fig. 11 NL-CPA cal-
culations which simulate SRO �Fe1−xCrx and Fe1−xVx� as
well as clustering �Fe1−xCrx�.

The important observation from our calculations is that
the influence of ordering effects �SRO and clustering� on the
residual resistivity is very small for these systems. In Ref. 15
the same formalism �using the same cluster sizes� was ap-
plied to bcc Cu1−xZnx as well as fcc Ag1−xPdx and gave a
strong variation in the resistivity as a function of the ordering
state. The small influence of ordering effects on the resistiv-
ity for Fe1−xCrx was also found experimentally by Mirebeau
et al.9 This shows that the formalism from Ref. 15 can
handle various different ordering dependences of the residual
resistivity. Nevertheless, one has to mention that we used in
our calculations only small cluster sizes with two atoms.
Therefore, it is not possible to preclude that bigger cluster
sizes would have a bigger impact on our transport calcula-
tions.

IV. DISCUSSION AND SUMMARY

The present work deals on an ab initio level with the
anomalous concentration dependence of the residual resistiv-

ity in Fe1−xCrx and Fe1−xVx alloys ��x�0.2�. Within CPA we
obtain a Nordheim-type behavior for small Cr/V concentra-
tions �smaller �8% Cr, smaller �6% V� and an approxi-
mately constant residual resistivity of 8 �� cm in the re-
gime from 10% to 20% Cr and 2 �� cm in the regime from
6% to 20% V, respectively. Such a concentration dependence
of the residual resistivity can be explained by the different
contributions of the majority-/minority-spin channel to the
conductivity. The BSFs of these spin channels are affected
differently by the increase in the Cr/V concentration as
shown in Figs. 3 and 5. The broadening of the majority chan-
nel leads to a lifetime of these states approaching zero.
Therefore, the contribution of the majority channel to the
conductivity drops down, whereas the BSF for the minority
channel is nearly unaffected by the increase in Cr/V concen-
tration. Hence, the contribution of these states to the conduc-
tivity is constant and responsible for the plateau in the re-
gime from 10% to 20% Cr �6% to 20% V�. These
observations explain the anomalous resistivity behavior of
Fe-rich antiferromagnetic alloys with comparable electronic
structure properties as Fe1−xCrx and Fe1−xVx, respectively. It
turns out that the concentration independence of the residual
resistivity is by no means anomalous for these materials.
Therefore, we predict a similar behavior for other alloy sys-
tems from the same branch of the Slater-Pauling plot.

In addition, we investigated the influence of short-ranged
correlations in the lattice site occupation by employing the
NL-CPA formulation of the Kubo-Greenwood equation. The
inclusion of such short-range effects has only little influence
on the results.

The comparison of the Fe1−xCrx calculations with experi-
ment shows satisfying agreement. The difference in the
heights of the plateau, as compared to the experiment, could
be attributed to impurities, lattice defects, grain boundaries,
etc., which are always present in samples and therefore con-
tained in the experimental data. Such imperfections, which
have been neglected in the present calculations, lead in gen-
eral to an increase in the measured resistivity.39

Our calculations show the initial linear increase albeit
with a lower slope than seen in experiment. In Ref. 8 it is
argued that this is a consequence of the limitations of the
CPA for alloys with a dominant concentration of one con-
stituent. However, it should be pointed out that our NL-CPA
results confirm the single-site CPA data.

Our calculations reveal a plateau of the residual resistivity
starting at the same Cr concentration as seen in the experi-
ment �at 10% Cr�. This is in variance to an earlier theoretical
study8 which finds the starting point of the plateau only at
�20% Cr.
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